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LIQUID CRYSTALS, 1995, VOL. 18, No. 2, 327-335 

Orientation of mesophase pitch in capillary and 
channel flows 

by JOHN J. McHUGH and DAN D. EDIE* 
Department of Chemical Engineering and Center for Advanced Engineering Fibers, 

Clemson University, Earle Hall, Box 340909, Clemson, 
South Carolina 29634-0909, U.S.A. 

(Received 10 December 1993; accepted 1 April 1994) 

Analytical solutions to the Leslie-Ericksen equations are discussed for flow through a circular 
capillary and a rectangular channel. The analysis allows for a director component out of the 
flow-gradient plane. The resulting orientation profiles match the commonly observed textures 
of mesopha$e pitch-based carbon fibres, specifically the radial and line-origin textures. Thus, this 
formulation would appear to be correct for the flow of discotic mesophase pitches. Furthermore, 
the velocity profile for capillary flow suggests the possibility of measuring the Leslie coefficient 
a4 for a mesophase pitch using a capillary rheometer. 

1. Introduction 
The physical properties of high-performance fibres 

are largely a result of the molecular orientation created 
during the fibre forming process. Since liquid crystalline 
materials will orient under shear flow, most of these fibres 
are formed from liquid crystalline, or mesophase, precur- 
sors. In such processes, orientation is achieved as the fibres 
pass through spinnerette capillaries. Fibre drawing merely 
accentuates orientation parallel to the fibre axis. Examples 
of liquid crystalline polymers that can form high-perform- 
ance fibres include Kevlar@ (poly (p-phenylene terephthal- 
amide)), liquid crystal polyesters, and PBO (poly @- 
phenylene benzobisoxazole)). 

A relatively new class of high-performance carbon 
fibres is melt-spun from mesophase pitch, a discotic 
nematic liquid crystalline material. This variety of carbon 
fibres is unique in that it can develop extended graphitic 
crystallinity during carbonization, in contrast to carbon 
fibres produced from polyacrylonitrile (PAN). 

The mesophase pitches used for high-modulus carbon 
fibre production can be formed either by the thermal 
polymerization of petroleum- or coal tar-based pitches 
[1,2] or by the catalytic polymerization of pure com- 
pounds such as naphthalene [3]. The mesophase trans- 
formation was discovered by Brooks and Taylor [4] as an 
intermediate phase, formed between 400°C and 550°C, 
during the thermal treatment of aromatic hydrocarbons. 
During mesophase formation, domains of highly parallel, 
plate-like molecules form and coalesce until, with time, a 
100 per cent anisotropic material may be obtained. It has 
been well-established that, when mesophase pitch is 

* Author for correspondence. 

carbonized, the morphology of the pitch is the primary 
factor [5] in determining the microstructure of the 
resulting graphitic material. 

This relationship between the melt orientation of 
mesophase pitch and the texture of the carbonized fibres 
accounts for the unique properties attainable in this class 
of fibre. When mesophase pitch is melt-spun into fibre 
form, there is very strong axial alignment of the aromatic 
rings caused by the shear field through the capillaries and 
subsequent fibre drawing. This orientation is critical in 
determining the properties of the carbonized fibres, as 
there is extreme anisotropy in the mechanical and transport 
of graphite. 

In addition to excellent mechanical properties, 
mesophase pitch-based carbon fibres can develop thermal 
conductivities as high as five times that of copper and 
orders-of-magnitude higher than PAN-based carbon 
fibres, approaching the value of single crystal graphite. 
The high thermal conductivity of graphite is due to 
excellent lattice wave conduction along the basal planes. 
Therefore, when developing a high thermal conductivity 
fibre, it is essential that the fibre possess extended graphitic 
domains. In addition to strong axial orientation, it is 
critical that the spacing between the basal planes within the 
fibre is minimized to enhance thermal conductivity. 
Hence, on a microscopic level, forming a fibre with a 
highly linear transverse texture is very important in 
developing thermal conductivity. 

The melt-spinning of mesophase pitch through non- 
circular capillaries offers the possibility of altering 
transverse orientation and producing a more parallel 
structure [6]. However, any attempt to optimize the 
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328 J. J. McHugh and D. D. Edie 

structure of carbon fibres formed from mesophase pitch 
requires a fundamental understanding of the flow behav- 
iour of this unique material. In this regard, modelling of 
mesophase pitch using available liquid crystal continuum 
theory is a logical starting point. However, applying this 
approach to mesophase pitch will, inevitably, involve 
approximations. First, mesophase pitch consists of a wide 
range of species, and therefore, one must realize that only 
the average molecular shape is discotic. Also, mesophase 
pitch is opaque, its composition may change with time 
above its softening point, and its liquid crystalline 
temperature region is typically around 300°C. These 
factors make a complete evaluation of its viscosity 
coefficients and elastic constants impractical. However, in 
spite of these difficulties, a qualitative understanding of 
the development of orientation during the melt-spinning 
of mesophase pitch is a reasonable goal. Furthermore, such 
an approach is necessary to optimize the structure- 
dependent properties of mesophase pitch-based carbon 
fibres. 

2. Theory 
The flow behaviour of nematic liquid crystals is much 

more complex than that of conventional fluids. This is due 
to the coupling between molecular orientation and fluid 
flow. Normally, the molecular orientation of nematics is 
quantified by a unit vector n, which points in the direction 
around which the molecules possess rotational symmetry. 
This implies that, for liquid crystals consisting of disk-like 
molecules, the director defines the short molecular axis. 

The fluid mechanics of nematic liquid crystals is 
described by the theory proposed by Leslie [7,8] and 
Ericksen [9-121. In this analysis, three equations, namely 
the conservation of mass, linear momentum, and angular 
momentum, describe the relationship between the 
pressure P, the local velocity v, and the director. 

2.1. Conservation of mass 
As with isotropic fluids, the conservation of mass 

equates the mass accumulation within a system to the bulk 
mass flow into the system, 

- _  i)p - - (V-pvj, 
at 

where p is the density. To simplify matters, the assumption 
of fluid incompressibility is employed, p # p(r ,  t)  (r is the 
position vector), simplifying equation (1)  to 

( V - v ) = O .  ( 2 )  

2.2. Conservation of linear momentum 
The most general form of the conservation of linear 

momentum for nematic mesophases is 
av 

P - =  - 
at 

p(v*V)v - V P +  [V-a] ,  (3)  

where cr is the stress tensor, expressible as the sum of 
viscous and distortion terms 

where F is the free energy density (described below). 
The distortion term normally is much smaller than the 
viscous term and shall be neglected in the following 
analysis. In such cases, equation (3) becomes 

a v  
p - =  at - / ) ( v ' V j v - v P +  (V*z]. 

For isotropic (newtonian) fluids, the viscous stress tensor 
would simply be proportional to the rate of deformation 
tensor, A, where the constant of proportionality is the fluid 
viscosity, q. Leslie postulated that the viscous stress tensor 
for nematics should be equal to the sum of six terms, each 
multiplied by a distinct 'viscosity'. The non-symmetric 
Leslie viscous stress tensor was developed as the most 
general form expressing a linear dependence on the rate of 
deformation and the director motion vector, which 
represents the rate of change of the director relative to the 
background rotation of the continuum. The Leslie 
coefficients represent the resistance to different kinds of 
viscous deformation. For instance, a4 relates to a 
material's resistance to simple shear flow (the only 
non-zero coefficient for an isotropic material). The Leslie 
viscous stress tensor is defined as 

z = al n(n - [A - n] jn + cc2nN + asNn + a4A 

+ xsn[n-A] + cw,[n-A]n. (6) 

The rate of deformation tensor and the director motion 
vector, N, may be written as 

A = $([Vv] + [VV]~),  

an 
N=-+(v -V)n-  

a t  

where o is the vorticity vector, defined as 

0 = r[ VXV]. (9) 

Through a relation developed by Parodi [ 131, 

zfj - c(5 = a2 + a3, 

only five Leslic coefficients are actually independent. 
The five independent coefficients can be related to five 
measurable quantities: the measured viscosities with the 
director externally fixed (for example, by a magnetic field) 
in the flow, gradient, neutral, and 45" (within the 
flow-gradient plane) directions, and the optically 
measured shear-alignment angle (in the absence of 
external fields). 

(10) 
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Orientation of mesophase pitch 329 

2.3. Conservation of angular momentum 
The conservation of angular momentum requires that 

the accumulation of angular momentum within a system 
equals the sum of the torques that act upon the system. 
In nematic liquid crystals, such torques can arise from 
elastic or viscous deformations. Thus, 

where Z is the moment of inertia and $2 is a local angular 
velocity of the director, defined by 

At moderate rotational velocities, the accumulation term 
is very small. Thus, if this term is neglected, the elastic and 
viscous torques must balance, or 

rela + rviw = 0. (13) 

The elastic torque, relasr is handled through analogy 
with the linear elastic theory of solids, where restoring 
forces oppose strains. In nematics, curvature of an initially 
(and uniformly) oriented liquid crystal is opposed by a 
restoring torque. Furthermore, analogous to Hooke’s law, 
these ‘torque stresses’ are assumed to be proportional to 
the curvature strains [endax, dnddy, etc.). This implies 
that the free energy density is proportional to the square 
of the curvature strains, where the total free energy relative 
to the state of uniform orientation is the volume integral 
of this free energy density. Based on earlier work by Oseen 
[14], Frank [151 derived the following expression for the 
Helmholtz free energy density, F, of nematic liquid 
crystals 

F = +[KI(  V - n)2 + K2( n V X n)2 + K3[ n - Vnl [n - Vnll . 
(14) 

The constants, K I ,  Kz, and K3 are called Oseen-Frank 
constants and relate to the splay, twist, and bend modes of 
deformation, respectively. A common assumption that 
greatly simplifies the mathematics is to set the elastic 
constants equal. In this case, equation (1 4) becomes 

F = +K[(V n)2 + [V X nI2 [V X nl]. (15) 

Subject to the constraint, (n - n) = 1, if the total free 
energy is minimized with respect to all changes in 
orientation, the following equilibrium relationship results: 

aF aF 
ani axj d(ani/axj) 

--+ [ ] = - I(r)n,, (16) 

where 2, a Lagrange multiplier, is an arbitrary function of 
position, r. The left-hand side of equation (16) is defined 
as the molecular field, hi. Condition (16) states that, at 
equilibrium, the molecular field must be parallel to the 

director (because I is a scalar). If h is not parallel to n, 
the elastic torque is non-zero and is given by 

relas = n X h. (17) 
Differentiation of the expression for free energy density, 
equation (14), yields the following relation for the 
molecular field: 

h=KIV(V.n)-K2((n*[VX n])[VX n] 

+ V[(n.[V X n])n) + K3{ [n X [V X n]] 

x [V x n] + V X [n X [n X [V X n]]]). (18) 

However, if the Oseen-Frank constants are assumed to be 
equal, equation (18) simplifies to 

h = KV2n. (19) 

The viscous torque, like the viscous stress tensor, is 

rvisc = - n [ n  X Nl - ydn X [A*nI l .  120) 

where y1 and y2 are the shear-torque coefficients, which are 
related to the Leslie coefficients by 

described by a constitutive equation, 

y1 = cl3 - u2 and y2 = u2 + cl3. (21) 

Substitution of equations (17) and (20) into the balance of 
torques, equation (1 3), yields 

[n X h] = yl[n X N ]  + y2[n X [A-n]]. (22) 

In short, the above Leslie-Ericksen model contains five 
independent ‘viscosity’ coefficients in the stress tensor 
and three elastic constants in the expression for the free 
energy. In using the Leslie-Ericksen model, it is assumed 
that the fluid is incompressible and isothermal. In the 
following examples, it is also assumed that there are no 
external torques, that the elastic constants are equal, and 
that the inertial terms in the equations of motion are 
negligible. 

3. Capillary flow 
We begin identically to the analysis of Poiseuille flow 

of isotropic fluids, assuming that only the axial component 
of fluid velocity is non-zero, that is 

vr = vg = 0, (23) 
and from the conservation of mass, 

v, = v,(r). (24) 

In order to write the conservation of angular momentum 
for capillary flow, we must first characterize the director, 
n, at any position in space. If we consider a single ‘disk’ 
(actually a statistical average of a very large number of 
molecules) at some arbitrary position in space, the 
orientation of its director may be completely described by 
two angles. Let [ represent the angle between the director 
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330 J. J. McHugh and D. D. Edie 

and the flow-gradient plane, while p is the angle between 
the director and the flow axis, as shown in figure 1. 

The director components are as follows: 

n, = cos [sin 8, ne = sin [ sin 8, nZ = cos 8. (25) 

The 'shear-aligning' case where [ = 0" has been treated by 
Atkin [ 161 and Tseng et al. [ 171, and is reviewed by Leslie 
[IS]. These studies precede any discussion of discotic 
mesophases, and this form of a solution does not seem to 
describe the flow behaviour of mesophase pitches. More 
generally, one could also allow the 'out-of-plane' angle, 
[, to vary with radial position, r. 

In this general description, the viscous and elastic 
torques (equations (20) and (17)) are 

relas = 

(x2 cos2 [ sin2 p - x 3  cos2 8) 
dr 

1 d[ dp 
dr dr 

sin [ sin (28) 
2 2  

- 2cos [cos'fi - - + 

sin [ sin (28) d '[- 2r  dr  

X -  r- - 
d dp cos[sin(2p) 
dr  ( dr) 2 

1 d[ d/r 
dr dr  

cos i sin (28) 
2 2  

- 2 sin icos2 B - - - 

. (27) 

As mentioned above, there exists one solution within 
the flow-gradient plane (i = 0") where the torques 
balance. It may be readily observed that each component 
of the viscous and elastic torques also vanishes at 
= @ = 90"; however, such an out-of-plane solution is 

generally assumed to be unstable. This is because a 
perturbation on the angle, [, away from this solution 
([ = j? = 90") will cause a non-zero viscous torque. 
The r-component of this torque should tend to rotate the 
director into the plane of shear, where 8 = 0" (see equation 
(26) and figure 1). 

Quantitatively, if the perturbation on i is 90" - 6, the 

r-component of the viscous torque may be written as 

which is positive for a2 > 0. (A positive x2 is predicted if 
the nematic molecules are modelled as rigid, oblate 
ellipsoids of revolution [ 19,201.) 

If it is assumed that the perturbation on [ occurs at a 
given position, r, the r-component of the elastic torque will 
have one dominant term, namely 

Since the viscous torque due to the perturbation on [ tends 
to decrease 8, a relative minimum on at r will result. This 
implies that the second derivative of p with respect to r is 
positive and the elastic torque is negative. Therefore, if the 
orientation is initially near [ = 8 = 90°, the viscous 
tendency to rotate the director around the r-axis will be 
opposed by an elastic torque, for x2 > 0. It seems that the 
magnitude of the Ericksen number (Er = Dvr]/K) may be 
critical in evaluating the stability of out-of-plane orien- 
tation with respect to a perturbation of a given magnitude. 

If one considers the anchoring behaviour of mesophase 
pitch, a mechanism for the proximity to the out-of-plane 
solution can be proposed. (Note that the anchoring of 
discotic molecules is described by the angle, i, in contrast 
to rod-like nematics, i.e. their long molecule axes are 
anchored, as opposed to their director.) It has been widely 
observed that the pitch molecules tend to orient with the 
aromatic rings perpendicular to many solid surfaces 
(including stainless steel, the usual material of construc- 
tion for spinnerettes). This corresponds to a boundary 
angle, [, equal to 90". Again, under such a configuration, 
the r-component of torque is responsible for changing the 
angle, 8. With the angle, [, equal to 90" at the capillary wall 

, 
V 
Y 

nates. 
Figure 1. Director orientation angles in cylindrical coordi- 
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Orientation of mesophase pitch 33 1 

Figure 2. Origin of radial texture in circular mesophase 
pitch-based carbon fibres. 

(where the shear rate is maximum), the viscous torque is 
zero (or, at least, very small). It may be further argued that 
entrance effects cause a large j? approaching 90". 

The out-of-plane solution suggests a radial orientation 
of the aromatic planes. From the above result, the origin 
of the radial texture most commonly found in mesophase 
pitch-based carbon fibres may be deduced and is illustrated 
in figure 2. Inspection of the cross-section of a circular 
mesophase fibre usually shows that the graphite crystal- 
lites converge toward the centre of the fibre, as shown 
schematically in figure 2. Clearly, the disks representing 
the molecular orientation before and within the capillary 
should not be considered drawn to scale. Figure 3 shows 
a scanning electron micrograph (SEM) of the radial texture 
of a mesophase pitch-based carbon fibre melt-spun from 
a circular capillary. This radial texture develops when flow 
is fully developed during extrusion through the spin- 
nerette. Past work has shown that this texture of 

Figure 3 .  SEM photograph of mesophase pitch-based carbon 
fibre illustrating the radial texture [21]. 

mesophase pitch-based carboa fibres is a direct reflection 
of the molecular structure [22]. 

Some degree of folding of the crystallites is also 
commonly observed, improving the fibres resistance to 
crack propagation and, thus, increasing its tensile strength. 
Folding is an artifact of disclinations in the precursor pitch 
which may, to a lesser extent, remain after spinning 
(if inadequate time is allowed for reorientation) [23,24]. 
Fibres may also be formed with the absence of any clearly 
defined texture. Generation of a random texture involves 
complete disruption of the developing flow (for example, 
by spinning through capillaries containing a porous media 
[251), and such fibres offer the potential of improved 
compressive strengths. Production of fibres with a concen- 
tric, or 'onion-skin', texture has also been reported, but it 
is difficult to postulate a single mechanism to explain their 
occurrence. Matsumoto [26] reports that extrusion 
through a large diameter capillary can yield fibres with a 
concentric texture. Hamada et al. [27], formed onion-skin 
fibres by stirring the pitch upstream from the capillary and, 
thus, inducing a tangential velocity component. Mochida 
et al. [28], have been able to produce fibres with a 
concentric texture at very high spinning temperature 
(low spinning viscosity). Note that the concentric texture 
corresponds to an in-plane director (in the absence of 
tangential flow). 

The values [ = j? = 90" (corresponding to the radial 
orientation) can be substituted into the z-component of 
the conservation of linear momentum, equation (5). The 
simplified form is 

~ 1 4  d2V, a4 dv, dP 
-~ +---- = 0. 
2 d? 2r dr dz 

Direct integration of equation (30) yields 

The result of equation (31) is identical to the Poiseuille 
velocity distribution predicted for isotropic fluids, with the 
viscosity equal to ad2. This suggests the possibility of 
measurement of the coefficient c14 for a discotic material 
using a capillary rheometer, whenever an out-of-plane 
orientation can be confirmed. The velocity distribution of 
equation (3  1) is briefly mentioned by Leslie [7]; however, 
this form of solution has essentially been overlooked, 
since such out-of-plane behaviour has only rarely been 
observed in the extensively studied rod-like nematics. 
Pieranski and Guyon [29] found that a sample of rod-like 
p-methoxybenzilidene p-n-butylaniline (MBB A) initially 
oriented out of the flow-gradient plane will maintain that 
texture only at low velocities. ZdAiga and Leslie [30] 
discuss the stability of an in-plane director for a flow- 
aligning ( m3 < 0) and non-flow-aligning (tl3 > 0) rod-like 
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332 J. J. McHugh and D. D. Edie 

nematic flowing between parallel plates using various 
initial boundary conditions. 

It has generally been assumed that only the relative 
magnitudes of a2 and a3 are of qualitative significance in 
the flow of nematic liquid crystals. This assumption is 
based on molecular dynamics simulations predicting the 
viscosity of a fluid of rigid, anisotropic molecules of 
specific shapes [31]. Considering a fluid composed of 
oblate ellipsoids (disks) of a specific shape, this analysis 
predicted a lower viscosity with an in-plane orientation. 
Employing these results, Ho and Rey 1321 present 
numerical solutions to the Leslie-Ericksen equations for 
the creeping flow of discotic liquid crystals between 
infinite converging and diverging planar walls. 

However, by only considering these two coefficients, 
no information about the tendency for out-of-plane 
orientation is obtained, where the viscosity is described by 
x4. In discotic systems, for instance, the above result 
indicates that perhaps the relative magnitudes of a4 and K 
must also be considered. Also, as mentioned above, 
surface interactions and capillary entrance effects may 
influence the tendency toward stable out-of-plane 
orientation. 

4. Channel flow 
In the production of mesophase pitch-based carbon 

fibres, it has been found that spinning through rectangular 
channels yields fibres possessing a highly linear texture 
which is conducive to high thermal conductivity. 
Specifically, the resulting ribbon-shaped fibres exhibit 
lower electrical resistivities than circular fibres of equiva- 
lent tensile moduli (electrical resistivity is inversely 
related to thermal conductivity) [33].  Since stiffness is 
essentially a measure of axial orientation, it appears that 
the difference in transverse orientation is at least partially 
responsible for the improved conductivity. 

Analysis of channel flow is somewhat more complex 
than capillary flow, due to the fact that there is no single 
gradient direction (in any convenient coordinate system), 
and thus, the flow is not viscometric. We may, however, 
begin the procedure by eliminating velocity components 
in the same manner as before. 

v, = vy = 0. (32)  

From the conservation of mass, equation (2), the non-zero 
z-component of the velocity is 

v, = VAX, y ) .  (33) 

To be perfectly general, at this point we would define 
the director using two angles: [, in the x-y plane (with 
respect to the x axis), and p, with respect to the flow axis. 
However, intuitively it is evident that there should be two 
solutions where the sum of torques is zero. The solution 
with = 90" seems to represent the physical situation in 

Figure 4. Director orientation angle in rectangular coordinates. 

capillary flow, and the axial behaviour should be quite 
similar in channel flow. Therefore, due to the added 
complexity of this problem, we shall bypass the question 
of stability and assume that p = 90", to see if the resulting 
predicted orientation profile qualitatively matches 
observed fibre textures. The out-of-plane angle, [, will be 
allowed to vary with x and y, as shown in figure 4. 
The director components are as follows: 

n = sin[(x,y) (34) rsc:l 
The x-,  y- ,  and z-components of the conservation of 

linear momentum are 

(35 )  
az, ax, a T x  
- + __ + __ = 0, 
ax ay az 

(37) 

After evaluation of the viscous stress tensor, the x- and 
y- components vanish, while the z-component is given by 

("5 avz a t  a v j  + (a5 - CI') cos(2i) - - + - ~ 

ax ay ay ax 

a2v, 
+ [(as - a2) cos2 [ + a4] - ax? 

+ [(a5 - a') sin' i + a41 - a2vz - 2 (f) = O .  (38) 
ay2 
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Figure 5.  Director angle boundary conditions for flow through 
rectangular channel. 
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X n/2 X 0 
a 
0 -Y 0 b 

Case I Case I1 

Figure 6. Partial solutions to problem represented in figure 5. 

The x-, y-, and z-components of the balance of torques are 

a 2 i  a2[ -+-=o, 
a 2  ay2 

K Z O .  

(39) 

The above z-component contains only the angle, [, as 
a dependent variable. Furthermore, it takes the familiar 
form of the Laplace equation. Therefore, we only need to 
specify the appropriate boundary conditions to obtain a 
solution for [ across the flow field. First, taking advantage 
of the symmetry of the flow system, we will consider only 
one quadrant from figure 4. For convenience, we will shift 
the origin midway along one edge. Examination of the 
case of flow between infinite parallel plates with an 
out-of-plane director (directly analogous to capillary flow) 
indicates that the director should tend to orient parallel to 
the walls of the channel. This corresponds to a perpendicu- 
lar alignment of the long molecular axes with respect to 
the solid boundaries. The formulation of the problem is 
depicted in figure 5, where the dashes within the flow field 
represent the long molecular axes (disk edges). 

The solution of equation (41) with the above boundary 
conditions may be obtained by superimposing solutions of 
similar problems, each with only one non-zero boundary 
condition. These problems shall be labelled Case I and 
Case I1 and are illustrated in figure 6.  

The solution to the Laplace equation with boundary 
conditions of the form in figure 6 (a Dirichlet problem) 
involves a classical separation of variables technique and 
is summarized below. 

4.1. Case I 
By employing separation of variables, the partial 

differentials of equation (41) may be converted to ordinary 
differentials. Let 

i t  = W ) V ( Y ) .  (42) 

I L  

ida,  y) = 5. (46) 

Using the first three boundary conditions, equations 
(43)-(43, the solutions for U(x) and Vly) are hyperbolic 
sine and sine functions, respectively. After recombination, 
the general solution for i~(x,y) is 

m 

[I = A,, sinh ( y) sin (y). (47) 
n =  1 

The final boundary condition, equation (46), requires that 
oc 

2 A,  sinh ( y) sin (7) = 2 (48) 
n = l  

The above condition, equation (48), is a Fourier sine 
series. Hence, the coefficients, A,, are given by the 
integral 

[ I -  ( - 1)”l 

n sinh ( y) 
b 

A,, = 2 n71a I, ~ s i n ( y ) d y =  --, 

b sinh ( 7) 
(49) 

Substituting these coefficients into equation (47), we 
obtain 

4.2. Case Ii 
The procedure for Case I1 is identical to that outlined 

above (with x and y interchanged). The boundary 
conditions are 

in(x, 0)  = 0, (51) 

(52) 

i I I ( 0 ,  Y )  = 0, (53)  

irda,r) = 0. (54) 

71 
~ I I ( X ,  b) = 2 I 

and 

The solution for Case I1 is 

Finally, we can generate the solution to the problem shown 
in figure 5 by summing equations (50) and (55). The result 
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predicts that the orientation angle should vary across the 
flow field according to 

[ 1 - ( - I)"] i = c  II 
n =  I 

sinh (?I 
+ sii 

sinh (F) 

sinh (y)  
sinh (y)  sin (7) 

1 

for 0 5 x 5 u and 0 5 y 5 b. Recall that this describes only 
one quadrant of the channel. However, the orientation 
fields of the remaining quadrants of the channel are simply 
mirror images of the above expression. The solutions to 
Cases I and 11, as well as their recombination, involve 
fairly classical techniques treated in a number of textbooks 
(see, for instance, Hildebrand [34]). For the case of h = 9u, 
the orientation profile appears as shown in figure 7. This 
pattern bears a striking resemblance to a typical fracture 
surface observed in ribbon-shaped mesophase pitch-based 
carbon fibres when viewed under a scanning electron 
microscope (SEM), as shown in figure 8. These fibres were 
spun using a spinnerette containing 12 rectangular 
channels, each with a 9: 1 aspect ratio. 

-kJ- I 

Figure 7. Transverse view of the orientation of a discotic 
mesophase flowing through a channel. 

Figure 8. SEM photograph of a ribbon-shaped mesophase 
pitch-based carbon fibre 1351. 

The solution for in equation (56) could be substituted 
into the z-component of the conservation of linear 
momentum, equation (38), using equations (39)/(40) to 
obtain the velocity profile. 

5. Concluding remarks 
The theory of Leslie and Ericksen has been applied 

to a system with a director component out of the 
flow-gradient plane. While this approach differs from 
most previous work involving solutions to the Leslie- 
Ericksen equations, it yields orientation profiles which 
agree qualitatively with the structures commonly observed 
in carbon fibres melt-spun from mesophase pitch, a 
discotic liquid crystalline material. 

The agreement of the above solutions with the observed 
microstructures indicates that increased attention must be 
given to the tendency of the director to achieve a stable 
orientation out of the flow-gradient plane. This tendency 
determines the relative stability of the commonly observed 
radial texture versus the concentric texture in mesophase 
pitch-based carbon fibres. 
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